Protective Role of Interleukin-10 in Ozone-Induced Pulmonary Inflammation

نویسندگان

  • Gillian S. Backus
  • Reuben Howden
  • Jennifer Fostel
  • Alison K. Bauer
  • Hye-Youn Cho
  • Jacqui Marzec
  • David B. Peden
  • Steven R. Kleeberger
چکیده

BACKGROUND The mechanisms underlying ozone (O₃)-induced pulmonary inflammation remain unclear. Interleukin-10 (IL-10) is an anti-inflammatory cytokine that is known to inhibit inflammatory mediators. OBJECTIVES We investigated the molecular mechanisms underlying interleuken-10 (IL-10)-mediated attenuation of O₃-induced pulmonary inflammation in mice. METHODS Il10-deficient (Il10(-/-)) and wild-type (Il10(+/+)) mice were exposed to 0.3 ppm O₃ or filtered air for 24, 48, or 72 hr. Immediately after exposure, differential cell counts and total protein (a marker of lung permeability) were assessed from bronchoalveolar lavage fluid (BALF). mRNA and protein levels of cellular mediators were determined from lung homogenates. We also used global mRNA expression analyses of lung tissue with Ingenuity Pathway Analysis to identify patterns of gene expression through which IL-10 modifies O₃-induced inflammation. RESULTS Mean numbers of BALF polymorphonuclear leukocytes (PMNs) were significantly greater in Il10(-/-) mice than in Il10(+/+) mice after exposure to O₃ at all time points tested. O₃-enhanced nuclear NF-κB translocation was elevated in the lungs of Il10(-/-) compared with Il10(+/+) mice. Gene expression analyses revealed several IL-10-dependent and O₃-dependent mediators, including macrophage inflammatory protein 2, cathepsin E, and serum amyloid A3. CONCLUSIONS Results indicate that IL-10 protects against O₃-induced pulmonary neutrophilic inflammation and cell proliferation. Moreover, gene expression analyses identified three response pathways and several genetic targets through which IL-10 may modulate the innate and adaptive immune response. These novel mechanisms of protection against the pathogenesis of O₃-induced pulmonary inflammation may also provide potential therapeutic targets to protect susceptible individuals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective effect of interleukin-36 receptor antagonist on liver injury induced by concanavalin A in mice

Objective(s): Interleukin-36 receptor antagonist (IL-36Ra) is a new member of the IL-1 family that exhibits anti-inflammatory activity in a variety of inflammatory and immune diseases. Our purpose was to determine the effect of IL-36Ra on liver injury in a mouse hepatitis model induced by concanavalin A (ConA). Materials and Methods: Mic...

متن کامل

Src-Mediated EGF Receptor Activation Regulates Ozone-Induced Interleukin 8 Expression in Human Bronchial Epithelial Cells

BACKGROUND Human exposure to ozone (O3) results in pulmonary function decrements and airway inflammation. The mechanisms underlying these adverse effects remain unclear. Epidermal growth factor receptor (EGFR) plays an important role in the pathogenesis of lung inflammation. OBJECTIVE We examined the role of EGFR activation in O3-induced expression of the chemokine interleukin 8 (IL-8) in hum...

متن کامل

Pulmonary responses to acute ozone exposure in fasted mice: effect of leptin administration.

Leptin is a satiety hormone that also has proinflammatory effects, including augmentation of ozone-induced pulmonary inflammation. The purpose of this study was to determine whether reductions in endogenous levels of leptin can attenuate pulmonary responses to ozone. To reduce serum leptin, we fasted mice overnight before ozone exposure. Fasting caused a marked reduction in serum leptin to appr...

متن کامل

Pulmonary inflammation induced by subacute ozone is augmented in adiponectin-deficient mice: role of IL-17A.

Pulmonary responses to ozone, a common air pollutant, are augmented in obese individuals. Adiponectin, an adipose-derived hormone that declines in obesity, has regulatory effects on the immune system. To determine the role of adiponectin in the pulmonary inflammation induced by extended (48-72 h) low-dose (0.3 parts per million) exposure to ozone, adiponectin-deficient (Adipo(-/-)) and wild-typ...

متن کامل

ROCK insufficiency attenuates ozone-induced airway hyperresponsiveness in mice.

Ozone causes airway hyperresponsiveness (AHR) and pulmonary inflammation. Rho kinase (ROCK) is a key regulator of smooth muscle cell contraction and inflammatory cell migration. To determine the contribution of the two ROCK isoforms ROCK1 and ROCK2 to ozone-induced AHR, we exposed wild-type, ROCK1(+/-), and ROCK2(+/-) mice to air or ozone (2 ppm for 3 h) and evaluated mice 24 h later. ROCK1 or ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2010